A Novel Method of Network Text Analysis
نویسندگان
چکیده
This paper describes a novel method of network text analysis, one that involves a new approach to 1) the selection of words from a text, 2) the aggregation of those words into higher-order concepts, 3) the kind of the relationship that establishes statements from pairs of concepts and 4) the extraction of meaning from the text network formed by these statements. After describing the method, I apply it to a sample of the seven most recent winners of the Academy Award for Best Original Screenplay―Little Miss Sunshine, Juno, Milk, The Hurt Locker, The King’s Speech, Midnight in Paris, and Django Unchained. Consistent with prior research, I demonstrate that structure encodes meaning. Specifically, it is shown that statements associated with a text network’s least constrained nodes are consistent with themes in the films’ synopses found on Wikipedia, the International Movie Database, and Rotten Tomatoes.
منابع مشابه
A Chance Constraint Approach to Multi Response Optimization Based on a Network Data Envelopment Analysis
In this paper, a novel approach for multi response optimization is presented. In the proposed approach, response variables in treatments combination occur with a certain probability. Moreover, we assume that each treatment has a network style. Because of the probabilistic nature of treatment combination, the proposed approach can compute the efficiency of each treatment under the desirable reli...
متن کاملCritical Discourse Analysis of the Political Novel, “Unsecured Existence”
Political novel is one of the kinds of Persian Literature with special factors, which are different from other contemporary story writing styles. These types of stories are more accommodated with critical discourse analysis (CDA) among other methods of novel analyses compared to other types, because of their specificity and unique quality of and their close relations with society and political...
متن کاملAutomatic Discovery of Technology Networks for Industrial-Scale R&D IT Projects via Data Mining
Industrial-Scale R&D IT Projects depend on many sub-technologies which need to be understood and have their risks analysed before the project can begin for their success. When planning such an industrial-scale project, the list of technologies and the associations of these technologies with each other is often complex and form a network. Discovery of this network of technologies is time consumi...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملA Novel Hybrid Whale Optimization Algorithm to Solve a Production-Distribution Network Problem Considering Carbon Emissions
Nowadays, there is a great deal of attention for regulations of carbon emissions to enforce the decision-makers of production and distribution networks to redesign their systems satisfactorily. The literature has seen a rapid interest in developing novel metaheuristics to solve this problem as a complicated optimization problem. Such difficulties motivate us to address a production-distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014